析水利工程安全监测自动化系统的改造方法

进修社 人气:2.93W

水利工程所建位置地质环境复杂,地基性质属于岩土特性且不均匀,如何分析水利工程安全监测自动化系统的改造方法?

析水利工程安全监测自动化系统的改造方法

某水利工程原有的安全监测自动化系统存在很多问题,例如运行速度慢、采集数据不全面、信息传输慢、效率低下,劳动强度大等问题。这些问题严重影响了水利工程的发展,也极大的制约了国民经济的发展。为此,有必要对原有系统进行升级改造。改造后的系统,采集网络结构更先进,测控装置选用了新型的MCU,增加了人工接口装置以及防雷电设备等,极大的改善了原有系统的性能,其运行速度有了很大的提高,采集数据以及信息传输的能力也有了显著的提高。

某些水利工程原有的安全监测自动化系统存在很多问题,例如运行速度过慢、采集数据不全面、信息传输慢、效率低下,劳动强度大等问题。这些问题严重影响了水利工程的发展。改造安全监测自动化系统,具有很重要的现实意义。目前,水利工程使用的采集控制设备大多配套有安全监测自动化系统,大多数采集控设备都是非标准的、通用的。设备的生产厂家不同、型号不同,设备接口不兼容等都将会影响安全监测自动化系统的性能以及增加改造的成本。为此,需在原有的安全监测自动化系统的基础上,加以改进和优化网络结构。改造后的系统,采集和传输信息的速度以及工作效率有了明显的提高,人工劳动强度也降低了,实现了自动化。

1 工程概述

某水利枢纽工程是一项集旅游、防洪、发电、灌溉为一体的综合性的大型水利工程,是一项规模达到大(2)型、建筑物等级为二等的农业开发的重要工程。工程的建筑物主要由4部分组成,分别是地面式发电厂房、引水隧洞、泄洪洞和大坝。

前两者(地面式发电厂房、引水隧洞)的建筑物等级为Ⅳ级,后两者(泄洪洞和大坝)的建筑物等级为Ⅱ级。工程的大坝最大坝高、坝长、坝顶宽、坝顶高程分别为76.3米,287米,10米,4261.3米。大坝主要用粘土心墙堆填筑。

2 工程安全监测现状

随时掌握枢纽的运行情况跟工作性态,需借助监测仪器设备。当初,在设计时已考虑到这点,该工程安装了大量的监测仪器设备。在2001年5月,该水利工程的安全监测自动化系统试运行,安全监测自动化系统主要从以下四个方面进行监测。(1)工程安全监测自动化;(2)变形安全监测(主要是监测枢纽外部);(3)引水系统安全监测;(4)大坝安全监测。该水利工程处于地震高烈度区,地震防烈度为8度。强震监测系统由3部分构成,分别是强震采集工作站、强震采集仪以及强震测点,其数量分别为1台、1台、4套。根据管理人员的叙述和相关资料的记录,证实从2004年两套系统的故障率已达到一定标准。在2013年4月22日到24日去现场进行测试和检测,发现的问题有:一是两套系统问题严重,基本瘫痪了。二是受雷击的影响,电源系统及主模块已损坏。三是强震采集仪以及强震采集工作站都无法工作。四是部分设备电路老化问题严重。五是MCU也遭受了破坏。六是主板已生锈腐烂(受潮湿以及电解液浸泡的影响)。

3 改造安全监测自动化系统的必要性及设计原则

3.1 必要性

该水利工程所建位置地质环境复杂,地基性质属于岩土特性且不均匀。安全监测自动化系统的运行状况以及工作性态易受多方面的影响而发生变化。例如,自然环境以及各种作用力,大坝配套安全监测系统的技术水平,安全监测系统的使用寿命,大坝的建筑材料、施工质量以及设计水平等都将会影响安全系统的运行状况以及工作性态。若是现场工作人员不能及时发现安全监测系统工作性态的异常情况,任由其发展,造成的后果将会非常严重。因此,有必要建立一套先进、可靠的安全监测系统,进一步对现有系统改造、升级,确保安全监测系统能正常稳定的运行,具有很重要的现实意义。

3.2 设计原则

安全监测系统的设计要满足3个设计原则,一是可靠性原则。安全系统的可靠性,可从技术指标方面来提升:(1)自动采集的数据的准确度要达到相关规范(SL551,SL268 等)的要求;(2)自动采集的数据的缺失率应低于2%;(3)数据采集装置的无故障时间的平均值应大于6800小时。二是先进性原则。通讯控制、自动化、计算机以及当前的监测仪器设备的软硬件技术水平要先进。三是经济适用原则。根据枢纽工程的实际作用,监测项目的改造要有针对性,现有的仪器设备不能弃之不用,要充分将他们的作用发挥出来,一来可以避免资源的浪费;二来可以节省投资,达到经济适用的目的。

3.3 改造项目的确定

通过对现场调研,该安全监测系统的运行现状和其他问题已全面掌握。改造的重点主要放在工程的安全监测自动化方面以及大坝安全监测方面。改造的具体监测项目主要有五个方面,一是工程安全监测自动化系统;二是大坝强震;三是大坝渗流;四是坝体内部位移;五是库区环境量。前四个方面是对现有系统进行升级改造的项目。第五个方面是新增的项目。

4 系统的改造设计

4.1 坝体内部位移监测

坝体内部位移的监测需在距大坝轴线7米处(坝轴线下游侧)的位置设置一条测斜管,其桩号为0+150.00 米。采用人工监测和自动检测两种方法来监测坝体内部位移(粘土心墙内部分层水平位移)分布的规律以及大小。人工监测方法使用的设备为活动测斜仪。自动检测的方法使用的设备为固定测斜仪。固定测斜仪安装在测斜管内,安装数量为13台。每隔6米安装一台固定测斜仪。

4.2 大坝渗流监测

为了能够全面掌握运行期的坝体的渗流情况,需监测坝体内浸润线的位置。坝体内浸润线的监测需在坝体内部沿坝轴线上游侧(距坝轴线1米)以及下游侧(距坝轴线7米)安装测压管。一般选择2个监测断面进行监测。在坝轴线选择桩号0+146.00 米和0+088.00 米作为监测断面。测压管的数量为4个,每个监测断面需安装2个。采用人工监测和自动监测的方法进行监测。人工监测使用的设备是平尺水位计。自动监测方法使用的设备是渗压计。渗压计安装在测压管内。自动监测方法需使用测压管4个,渗压计6支。渗流量自动化监测和绕坝渗流的监测需安装测压孔12个,采用自动监测的方法进行监测。自动监测使用的设备为渗压计。12支渗压计需安装在测压孔内。

4.3 大坝强震监测

在原大坝的强震监测台阵上进行重新设置。监测的主要目标位于大坝的最高点和自由场测点。选大坝上桩号 为0+142.30m点为最高点,选大坝下游距坝址距离为100米处为自由场测点。大坝的强震监测需设置6个监测点。其中3个监测点设置在坝址、坝高的1/2,坝顶处。剩余的监测点(3个)分别设置在自由场、右岸坝肩、溢洪道处。每个监测点还需使用加速度传感器((3向一体))1台和强震仪1台。在左岸的监测房内安装强震采集仪。自动监测(地震动力加速度变化的瞬间过程)主要是通过强震仪之间组网实现的。